The **Ultimate** Formula Sheet for SAT Math

These formulas are provided in the reference information at the beginning of each SAT math section:

Area of a Circle: $A = \pi r^2$

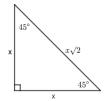
Circumference of a Circle: $C = 2\pi r$

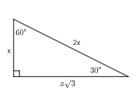
Area of a Rectangle: A = Iw

Area of a Triangle: $A = \frac{1}{2}bh$

Pythagorean Theorem: $a^2 + b^2 = c^2$

Special Right Triangles:


Volume of a Rectangular Prism (Box): V = lwh


Volume of a Cylindar: $V = \pi r^2 h$

Volume of a Sphere: $V = \frac{4}{3}\pi r^3$

Volume of a Cone: $V = \frac{1}{3}\pi r^2 h$

Volume of a Pyramid: $V = \frac{1}{3}lwh$

Fractions, Decimals, and Percentages: (for this section, r is the percent in decimal form)

$$Fraction = \frac{part}{whole}$$

$$percent = \frac{part}{100}$$

Percent Increase or Decrease:

$$\frac{\left|old-new\right|}{old} \times 100\%$$

Increase by a percent: multiply by (1+r)

Decrease by a percent: multiply by (1-r)

Simple Interest: A = P(1+rt)

Interest Compounded Annually: $A = P(1+r)^t$

Interest Compounded n times per year:

$$A = P \left(1 + \frac{r}{n} \right)^{nt}$$

Rates, Ratios, and Proportions:

General form of a conversion factor:

$$\left(\frac{\textit{ending}_\textit{units}}{\textit{starting}_\textit{units}}\right)$$

Example:
$$10 feet \left(\frac{12 inches}{1 foot} \right) = 120 inches$$

Concentration of A x Volume of A

- + Concentration of B x Volume of B
- = Final concentration (Vol. of A + Vol. of B)

Distance = Rate x Time

Exponents, Roots, & Polynomials:

Multiplication Rule for Exponents: $a^b \cdot a^c = a^{b+c}$

Division Rule for Exponents: $\frac{a^b}{a^c} = a^{b-c}$

Power Rule for Exponents: $(a^b)^c = a^{bc}$

Negative Exponents: $a^{-b} = \frac{1}{a^b}$

Fractional Exponents: $a^{\frac{b}{c}} = \sqrt[c]{a^b} or (\sqrt[c]{a})^b$

$$i^2 = -1$$
; $i^3 = -i$; $i^4 = 1$

$$i^{4n} = 1$$
; $i^{4n+1} = i$; $i^{4n+2} = -1$; $i^{4n+3} = -i$

Parabolas:

Standard Form: $f(x) = ax^2 + bx + c$;

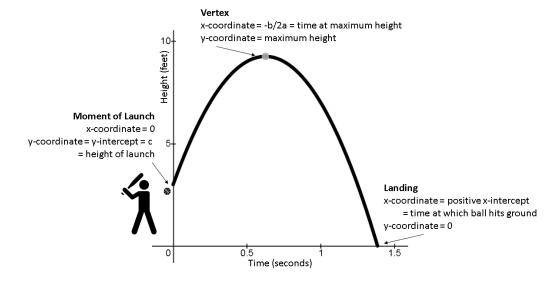
vertex= $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$;

y-intercept = c;

x-intercepts = $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Sum of solutions = $\frac{-b}{a}$

Discriminant = $b^2 - 4ac$; Pos=2 real roots Zero= 1 real root; Neg=2 imaginary roots


Factored Form: f(x) = a(x-m)(x-n);

x-intercepts are m and n;

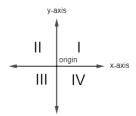
x-coordinate of vertex = $\frac{m+n}{2}$

Vertex Form: $f(x) = a(x-h)^2 + k$;

vertex = (h,k)

Difference of Squares: $a^2 - b^2 = (a+b)(a-b)$

Perfect Square Trinomial: $a^2 + 2ab + b^2 = (a+b)^2$ and $a^2 - 2ab + b^2 = (a-b)^2$


Completing the Square: $x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$

Graphing Lines:

Slope Formula:
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Slope of horizontal line = 0

Slope of vertical line = undefined

Standard Form:
$$Ax + By = C$$

Slope-Intercept Form:
$$y = mx + b$$

Point-Slope Form:
$$y - y_1 = m(x - x_1)$$

Distance Formula:
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Midpoint Formula:
$$M = \left(\frac{X_1 + X_2}{2}, \frac{Y_1 + Y_2}{2}\right)$$

Parallel lines: equal slopes

⊥ Lines: slopes are opposite reciprocals

Data and Probability:

average =
$$\frac{sum_of_items}{number_of_items}$$

range = maximum - minimum

$$probability = \frac{desired_outcomes}{possible_outcomes}$$

Angles:

Vertical \angle 's are \cong

 \angle 's that form a linear pair are supplementary (add up to 180°)

∠'s that form a circle add up to 360°

When \parallel lines are cut by a transversal, all acute \angle 's are \cong and all obtuse \angle 's are \cong

Triangles:

The three \angle 's of a \triangle add up to 180°

An exterior \angle is equal to the sum of the two remote interior \angle 's

Pythagorean Triples: 3-4-5 and 5-12-13

Circles:

A radius and tangent make a right ∠

A central \angle is double the inscribed \angle

$$\frac{x}{360} = \frac{arc}{circumference}$$

and
$$\frac{x}{360} = \frac{\text{sector}}{\text{area_of_circle}}$$

where x = central angle

Formula for a Circle: $(x-h)^2 + (y-k)^2 = r^2$, where (h,k) is the center and r is the radius

Polygons: (for this section, n is the number of sides)

Area of a trapezoid:
$$\frac{1}{2}(b_1 + b_2)h$$

One interior angle of a regular polygon: 180(n-2)

Sum of the interior angles:
$$180(n-2)$$

$$\frac{180(n-2)}{n}$$

Sum of the exterior angles: 360°

Properties of Parallelograms:

1. Opp sides are \parallel and \cong

2. Opp \angle 's are \cong

3. Consec ∠'s are supplementary

4. Each diagonal forms a pair of $\cong \Delta$'s

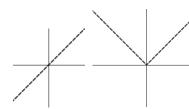
5. Diagonals bisect each other

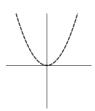
 \rightarrow If they are \cong it is a rectangle

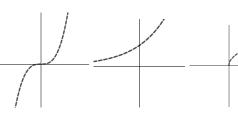
→ If they are ⊥ it is a rhombus

6. Area = base \times height

Trigonometry:


$$\sin = \frac{opp}{hvp}$$


$$\sin = \frac{opp}{hyp}$$
 $\cos = \frac{adj}{hyp}$ $\tan = \frac{opp}{adj}$


$$\tan = \frac{opp}{adi}$$

 $\sin(x) = \cos(90 - x)$ The sine of an \angle is equal to the cosine of its complement.

Parent Graphs & Transformations:

$$y = x$$

$$y = |x|$$

$$y = x^2$$

$$y = x^3$$

$$y = a^x$$

$$y = \sqrt{x}$$

Transformation

$$f(x)+k$$

$$f(x)-k$$

$$f(x+h)$$

$$f(x-h)$$

$$-f(x)$$

$$\frac{1}{c}f(x)$$

Visual effect